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The authors have obtained a set of equations describing two-dimensional motion of gas and polydisperse 

char and ash particles in a high-concentration two-phase ascending flow. Interphase interaction, turbulent 

and pseudoturbulent particle transfer, and effects of the channel walls and mass forces are taken into 

consideration. 

A serious hindrance to power production development is increase of the ash content in the produced fuel 

and danger of large-scale environmental pollution with emissions of thermal power plants due to high-temperature 

combustion of powdered fuel in chamber furnaces. With this in view, it is clear that a search for new methods for 

processing low-grade fuels is urgent. One of these methods is circulating fluidized bed (CFB) combustion. It 

combines advantages of dust-coal boilers and fluidized bed (FB) furnaces. Since the process occurs at relatively 

low temperatures, complete burn-out of coke particles is only possible if they stay in the reaction zone for a relatively 

long time. Therefore, the relations of physicochemical and heat and mass transfer processes in such a system are 

determined primarily by the aerodynamics and structure of the system. A CFB reactor can be divided into two 

parts: an FB near the gas distributer and a freeboard zone. The latter, in turn, is divided according to the mode 

of particle motion into the two zones: the upper (pneumatic transport) zone (PTZ) and the lower (transient) zone 

(TZ). In the former, ascending material motion takes place at all points of the reactor cross-section, and in the 

latter, ascending particle motion occurs in the core and descending dense flow of the solid phase takes place in the 

annular near-wall region. In this article a mathematical model (MM) is suggested for the aerodynamic, heat and 

mass transfer, and physicochemical processes in the freeboard region of a CFB boiler. In developing an MM it is 

probably useful to consider separately each of the above mentioned zones. We will start with the aerodynamics of 

the PTZ, for which the problem is substantially simpler. It should be noted, however, that the model of the flow 

motion in the PTZ can also be used for the TZ core, which will be considered later. 

The discontinous phase will be assumed to consist of nl fractions of char and n2 fractions of ash spherical 

particles. We will use Euler's description (in the laboratory coordinate system we will consider the point to which 

particles and gas elements come at different times) and a steady-state two-dimensional (axisymmetric) statement 

of the problem. It should be noted that in [1, 2], which give the one-dimensional model of motion and heat and 

mass transfer in a CFB, all parameters of the gas and particles are reactor cross-section-averaged. In this case the 

effect of the interaction with the wall has to be included rather approximately through the change in the averaged 

parameters, and consideration of turbulent and pseudoturbulent [3] effects is very difficult. Therefore, one- 

dimensional models cannot give complete information about the evolution of the state of a two-phase system. 

Since in the CFB particle collisions are much more frequent than collisions with the walls, it can be assumed 

that there will not be any preferable directions of particle rotation in the flow*. Therefore, it is possible to omit the 

* More exactly, axial velocities of the particles are much larger than transverse ones so that the preferable 
directions of their angular velocity vector f2 lie in the horizontal plane; however, the distribution of the 
directions f~ is practically uniform (see also [4 ]) 
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equation of the particle moment of momentum transfer, and the averaged Magnus force should be small compared 

to the other factors. Estimates of the contributions of viscous and concentration migrations [5 ] show that under 

the conditions in a CFB the corresponding drift velocity is at least an order smaller than the characteristic transverse 

fluctuation velocity. Thus, the equations of the averaged particle motion should include interphase interaction 

(aerodynamic resistance and Safman's forces), particle collisions, and the mass force. 

Use will be made of the boundary layer approximation, i.e., ~<< ~ and O/Oz << O/Or will be assumed. In 
considering turbulent and pseudoturbulent effects, ordinary assumptions will be made: u' << ~, but v' - -  v ( u '  and 

v' are characteristic fluctuation components). It will also be assumed that in the transverse direction turbulent 

transfer is comparable with convective transfer and in the longitudinal direction the former is much smaller than 

the latter. If O~/Or is neglected (this quite reasonable under the conditions considered), the equation for the 

averaged radial gas velocity can be omitted. 
The initial equations can be obtained by applying Reynolds's procedure to the actual equations of mass 

and momentum conservation for the gas and particles. Since the derivation of these equations is similar to that 

described in [6 ], we will present this system in the final form: 

0 1 0 
+ - + p'g Vg) l = o. r ~ r  

(1) 

0 (/~i ui) + 1 0 0--z r ~ [r (~i ~ /+  fli v~) ] = 0 
(2) 

(i = ] ,  l ;  j = 1, 2 . . . . .  n 1 ; l = 1, 2 . . . . .  n 2 )  ; 

pg ug_~ + ~g-~g + p~g) O-u$ 1 0 [ ( O~g ) ]  0~ ~ F / z ;  (3) 

[ _  _ o-a  ] o - 
(4) 

[ ] - _ , , - -  ,2 

Pi : i  lli-'~2 + (fli Vi "F fl'i vl)--~r = -- r 0"-7 

Continuity equations (1) and (2) include axial and radial convective and fluctuation mass transfer. In the fight-hand 

side of (3) viscous and turbulent stresses, the pressure gradient, and the inverse particle effect appear. Equations 
of particle motion (4) and (5) include the Reynolds stresses, gravity forces, collision forces, forces of interaction 

with the gas, and centrifugal forces induced by transverse velocity fluctuations. It can easily be seen that the term 
(O/Or)(rfliv~ 2) in (5) includes the turbophoresis effect (particle displacement toward decreasing fluctuation rates). 

Integration of (1) over the reactor cross-sectional area with ~gw = 0, (p[V[)w = 0 gives the equation of gas flowrate 

conservation: 

R 
Gg = 2.~g fo0 -~g rdr (6) 

(naturally, for isothermal conditions Opg/Or = 0 follows from O~/dr = 0). Using formula (6) one can find gas density 

from the function ~g(r), known for every cross-section z, and the gas pressure is found from the equation of state. 
Then, it is necessary to determine the turbulence parameters of gas. To do this, use will be made of the 

one-parameter model, i.e., system (1)-(6) will be supplemented with the equation of transfer of kinetic energy of 

turbulent gas fluctuations kg -- 0 . 5 (u~  2 + ~,~2 + w~2): 
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In the right-hand side of equation (7) the first term describes molecular and turbulent transfer of the fluctuation 

energy, the second and third terms describe its generation due to the energy of averaged motion and flow 

turbulization in the particle wake, and the fourth term describes dissipation due to gas viscosity and the presence 

of a disperse phase [3, 6 ]. For calculation of the correlations of the fluctuation parameters of the gas appearing in 

(1), (3) and (7), we will use the Boussinesq hypothesis and its analogs 

~ r  ,2 ,2 ,2 v t Okg (8) 
- o-a . v'g % + vg + ) = - Or 

(here cr is an empirical constant). The value of v t in (8) can be determined using the recommendations of [7 ]. 
" " 7  t t t 

In order to find correlations of the fluctuation parameters of particles (v} 2, w '2 ui, vi, flirt, s e e  (2) (4) 

and (5)), first of all, it is necessary to determine the intensity of their random motion. As is known, large particles 

(6 - 10 -4 m and larger), which constitute a substantial part of the discrete flow mass in the CFB, are entrained 

by turbulent fluctuations of the carrier quite weakly. Fine particles, which are entrained to a great extent likewise 

cannot be brought into intense fluctuational motion by the turbulent mechanism, since under the conditions 
considered the kinetic energy kg of gas fluctuations markedly decreases because of dissipation on particles (the 

term ep in (7)). Nevertheless, when the concentrations in the flow are not very small, particles are involved in 
random motion induced by the mechanism of particle collisions [3, 8 ]; in this case pseudoturbulent energy is 

generated due to the energy of the averaged particle motion, and the potential energy of the gas is transformed 

into the latter. 

Thu.___s, it..__will be assumed subsequently that the random particle motion (its energy is defined by k i = 
0.5(u1.2 + v} 2 + w} 2)) consists of turbulent and pseudoturbulent components. Naturally, k i cannot be found with the 

use of the locally homogeneous approximation (in a way similar to that used in [6 ] for calculation of the intensity 

of purely turbulent particle motion). In this case it is necessary to take account of generation of the random energy 

due to the averaged motion, its dissipation, and transfer by different mechanisms. In order words, it is necessary 

to construct the equation of transfer of the energy of random particle motion, similar to (7). It should be noted 
that for turbulent flows this equation was used (probably for the first time) in [9 ]. However, in that study only 

the terms describing the convective transfer and fluctuation slip are taken into consideration. In [7 ] more adequate 

transfer equations are derived for v'p 2, w'p 2, etc. (also with just turbulent motion taken into account). As regards 

random particle motion of pseudoturbulent origin, for gas suspensions this question has been studied very 

inadequately and in the existing models (for example, [5 ]), this factor is neglected. It seems worthwhile to pay 

attention to papers [10, 11 ], devoted to investigation of the particle motion in highly concentrated systems 

(fluidized or packed beds). In [10] the authors analyze the case of concentrations close to the maximum flmax, 

where displacements of particles have an order of magnitude substantially smaller than their size. They use the 
ordinary hydrodynamic equation for each of the phases. In these equations the transfer coefficients are calculated 

from very simple kinetic considerations. In [11 ] the one-particle f and two-particle f(2) velocity distributions of 

particles are introduced (f is governed by Boltzmann's equation) and from the equation of transfer of traits a general 
form of the hydrodynamic equations of conservation of mass, momentum, and energy of random particle motion is 
obtained. Next, for calculation of the terms in this equation it is assumed that the function f is Maxwellian and 
f<2) is a product of one-particle functions with the normalization factor 0.611 - (fl/flmax)l/3] -1 (in this case not 

quite elastic particles with smooth surfaces are considered). Evidently, formal extension of the gas kinetic relations 
to the mechanics of multiphase media could not be considered reasonable. It should be also noted that the authors 

of [10, 11 ] consider only monodisperse material, neglecting gas turbulence, and the particle roughness is either 
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neglected [11 ] or analyzed in a speciMcase [10]. In what follows, some of the relations from [10, 11] will be 
compared with the present results. 

In the construction of a model of random particle motion in a gas suspension flow two methods can be used: 

a) separate determination of parameters of turbulent and pseudoturbulent motions followed by finding the 
total energy of random motion; 

b) determination of the total energy from one general equation. 

It is likely that method (a) results in simpler relations; however, the problem of adequately combining and 

summing the results is very complicated and requires adoption of particular hypotheses, whose justification is 

connected with additional difficulties. Therefore, method (b) will be used here. For the derivation of the transfer 

equation for ki, it is necessary, first of all, to obtain the equation for fluctuation particle motion; just as in [6, 7] 
we have 

t m i 

Pi L~iVi " VVl + ~3iVi)' " VVi] = F i + C i +P i g f l l  + V (~iVi) V' i (9) 

(here fli and Vi are actual values of the parameters). Since subsequently the projections in (9) will be multiplied 
by the flucluation velocity components and averaged, it is clear that after these manipulations the last term in the 

right-hand side of (9) will be zero. Two simplifying assumptions will be used: (1) as was shown by estimates, the 

resistance force exceeds the Safman force over almost the whole cross-sectional area of the channel, so that the 
latter will be neglected; (2) fluctuations of the gravity force will also be neglected. The fluctuation component of 

Ci is related with random position of the impact line rather than with velocity or concentration fluctuations (in 

particular, Fi ) with prescribed velocities of the interacting particles. Therefore, conventional methods of turbulence 

theory cannot be used for calculation of Ci. V I (which describes generation and dissipation of the energy of random 

motion due to collisions). These components of the final equation of transfer will be determined separately from 

analysis of the dynamics of the collision process. In view of the above, the corresponding terms in (9) will be omitted 

and the equation will be projected onto the coordinate axes. As an example, we will give the projection onto the r 

axis 

+ ( ) OV i OV I W i OVi W i W i 
Pi fli ui-~z + vi-~r + r 090 r 

I O-~i O-~i o-fi 1 ] F j, 
+ Pi ([Ji ui)'--~z + (fit vi)'-~r + (]Ji wi)' ~ r O~i wi)'-wi = (10) 

(here a general case is considered and axial symmetry of the problem is neglected; therefore terms containing ~// 

and O/OT, appear here). Then, equation (10) is multiplied by V/and averaging is performed in the resultant equation. 

Equations for ui 2 and wi ~ can be written in the same way. Summing up the three equations, using axial symmetry 

of the problem and the boundary layer approximation, and neglecting the concentration fluctuations compared to 

velocity fluctuations and lhe other small terms will result in transforming the equations of transfer of energy of 

random motion of particles i to the form 

r _ Ok i oki ] Pi 0 2 ,2 2 
Pi L fli-ui--~z + (fli-vi + ~ - - ~ r  - 2r Or [r ~i v; (u; + vi + w ; ) ] -  

- + + (11) 

where Ki = K~/- RT/*, K~ describe the generation and K~/* describes the dissipation of the pseudoturbulent energy 

due to collisions. In equation (11) the first term in the right-hand side describes the transfer of k i by random 
particle motion, the second term describes the transition of the energy of averaged motion into fluctuation energy, 
and the third, the generation and dissipation of the fluctuation energy due to the aerodynamic resistance force. As 

was noted earlier, k i includes both turbulent and pseudoturbulent energies, and therefore the correlations in (1 1) 
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(except for u~vi) should be calculated with account for both mechanisms. However, the term containing the averaged 
velocity gradient describes just the turbulent effects since generation of pseudoturbulence due to averaged motion 
is described by the term K~/. Correlations of the parameters of particles are calculated similarly to (8). It should 

be noted in conclusion that in [ 11 ] the equation of transfer of the energy of random motion of monodisperse material 

has a structure similar to that of (11) but includes only the mechanism of particle collisions. 

N O T A T I O N  

z, r, ~o, longitudinal, radial, and transverse coordinates; p, pressure; p, densi ty;  r ,  true volume 
concentration; V, velocity vector; u, v, w, its projections onto the axes z, r, and ~o; v, ~, kinematic and dynamic 
viscosities; Fi, force of interphase interaction of the i-th fraction per unit volume of the two-phase mixture; Ci, force 

of interphase collisions; g, gravitational acceleration; G, mass flowrate; R, reactor radius; k, kinetic energy of 
fluctuation motion; D, diffusion coefficient. Subscripts: g, gas; i, j, l, number of the particle fraction; w, wall; t, 
turbulent analog; superscripts: - ,  ', averaged and fluctuation components. 
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